JavaScript +
PHP

-

AJAX

Costantino Pistagna
<pistagna@dmi.unict.it>

What’s is Ajax?
® AJAX is not a new programming language
® |t’s a new technique for better and faster web applications.
® JavaScript can communicate directly with the server.
¢ with the XMLHttpRequest object.
® JavaScript can trade data with webServer

® without reloading the page.

Ajax Technologies

® AJAX uses asynchronous data transfer

® HTTP requests

® between the browser and the web server
® Request small bits of information from the server

® instead of whole pages

® speed++

® interaction
® AJAX makes Internet applications

® smaller, faster and more user-friendly.

AJAX Standards

® AJAX s based on the following web standards:
® JavaScript
e XML/JSON
e HTML
® CSS

The XMLHttpRequest object

® To get or send information from/to a server with traditional JavaScript
® Make an HTML form
® Click the "Submit" button to send/get the information
® Wit for the server to respond
® Then a new page will load with the results
® The server returns a new page each time the user submits input
® Traditional web applications can run slowly

® Tend to be less user-friendly

The XMLHttpRequest object

With AJAX, your JavaScript communicates directly with the server,
® Through the JavaScript XMLHttpRequest object.
XMLHttpRequest makes a request and get a response from server
® without reloading the page.

The user will stay on the same page

® he will not notice that scripts request pages

® data to server in background.

Introduces some things that were otherwise impossible

e HEAD requests

How does it work!?
® Instead of a user request being made to server via
® HTTP POST or GET request
® such as would be made by submitting a form
® An Ajax script makes a request to the server
® by using the Javascript XMLHT TPRequest object
® This object may be unfamiliar to many

® it behaves like a fairly ordinary javascript object

How does it work?

® When using a javascript image object...

® We may dynamically change the URL of the image
source

® Without using a page refresh.

o XMLHTTPRequest retrieves information from the
server in a similarly invisible manner.

Why XML HTTP Request object?

® Whilst the object is called the XML HTTP Request object
® it is not limited to being used with XML
® it can request or send any type of document

® Dealing with binary streams can be problematical in javascript.

® we will see the JSON alternative

Ajax Events

® Ajax uses a programming model with

® display and events
® These events are user actions

® they call functions associated to elements of the web page
® [nteractivity is achieved with forms and buttons.

® DOM allows to link elements of the page with actions and also to
extract data from XML files provided by the server.

XMLHttpRequest Methods

To get data on the server, XMLHttpRequest provides two methods:
- Open: create a connection.
- send: send a request to the server.

Data by the server will be found in the attributes of the
XMLHttpRequest object:

- responseXml for an XML file or

- responseText for a plain text.

Take note that a new XMLHttpRequest object has to be created
for each new file to load.

We have to wait for the data to be available to process it

® The state of availability of data is given by the readyState
attribute of XMLHttpRequest.

How is it coded?

We need to know how to create an XMLHT TPRequest object.

The process differs slightly

® if you are using Internet Explorer (5+) with ActiveX enabled

® or a standards-compliant browser such as Mozilla Firefox.

With IE, the request looks like:

http =

new ActiveXObject("Microsoft.XMLHTTP");

In a standards browser we can instantiate the object directly:

http = new XMLHttpRequest();

Our Implementation

function getHTTPObject() {
if (typeof XMLHttpRequest != 'undefined') {
return new XMLHttpRequest();

}

try {
return new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

try {
return new ActiveXObject("Microsoft.XMLHTTP");

} catch (e) {}
}

return false;

}

Our Implementation

® We need to write an event handler
® which will be called via some event on our user's page
® Will handle sending our request for data to our server
® The event handler will use methods of XMLHTTPRequest object:
® Make the request of the server
® Check when the server has completed the request

® Deal with the information returned by the server

Our Implementation

® For example,

® We can make our request of the server by using a GET method
to an appropriate server-side script.

® Assuming that we have created our XMLHTTPRequest object
and called it http:

var http = getHTTPObject();
http.open("GET", "http://example.org/test.txt", true);
http.onreadystatechange = function() {
if (http.readyState == 4) {
doSomethingWith (http.responseText);
}

}
http.send(null);

Our Implementation
® The function listens to the onreadystatechange property
® each time this parameter changes
® calls a further function
® We said little about the server-side script which is called

® Essentially this can be any server routine which will generate the
required output when called with the relevant URL and
appended parameters

® as in any other HTTP GET request.

Handling data: readyState
® We need to write a function useHttpResponse
® will establish when the server has completed our request

® and do something useful with the data it has returned:

function useHttpResponse() {
if (http.readyState == 4) {
var textout = http.responseText;
document.write.textout;

}
}

Handling data: readyState
Our function checks for a readyState value of 4

there are various numbered states describing the progress of such
a request

tipically, we are interested in the value of 4

® which indicates that the request is complete and we can use the
returned data.

: not initialized.

: connection established.
: request received.

: answer in process.

: finished.

> W N - O

var textout = http.responseText;

® We have received our information as simple text

response Text

® via the responseTlext property of our XMLHTTPRequest object

® |nformation can be returned as XML

® or as properties of a predefined javascript object

Example: Get a text

<html><head><script>
function submitForm() {

var http;
try { http = new ActiveXObject('Msxml2.XMLHTTP'); }
catch (e) {
try { http = new ActiveXObject('Microsoft.XMLHTTP'); }

catch (e2) {
try { http =
catch (e3) {

new XMLHttpRequest(); }
http = false; }

}
http.onreadystatechange = function() {

if (http.readyState == 4) {

if (http.status == 200)
document.ajax.dyn="Received:" + http.responseText;

else
document.ajax.dyn="Error code " + http.status;

}

}i
http.open(GET,
http.send(null);

"data.txt", true);

}

</script></head>

<body>
<FORM method="POST" name="ajax" action="">
<INPUT type="BUTTON" value="Submit" ONCLICK="submitForm()">

<INPUT type="text" name="dyn" value="">

</FORM>
</body></html>

Get from XML

® To get data from an XML file, we have just to replace this line:

document.ajax.dyn="Received:" + http.responseText;

® by this code:

// Assign the XML file to a var
var doc = http.responseXML;

// Read the first element
var element = doc.getElementsByTagName('root').item(0);

// Assign the content to form
document.ajax.dyn.value= element.firstChild.data;

Write to body
® |In this demo, the text read is put into the body of the page
® not into a textfield

® The code below replaces the textfield form object

<div id="zone">
. some text to replace ...
</div>

® the second part replaces the assighment into the JavaScript
function.

document.getElementById("zone").innerHTML = "Received:" + http.responseText;

Post a text

® |n this demo, a text is sent to the server and is written into a file.

® The call to the "open” method changes

® the argument is POST

® the url is the name of a file or script that receives the data sent

® the "send" method has now a value as argument that is a string

of parameters.

http.open("POST", "ajax-post-text.php", true);

http.send(data);

http.setRequestHeader ("Content-Type", "application/x-www-form-urlencoded");

Post a text

® The parameter of the send method is in the format of the HTML
POST method.

® When several values are sent, they are separated by the ampersand

symbol:

var data = "file=" + url + "&content=" + content;

A sample and full application - Step #l|

® Creating the form
® We first create a simple webpage that has the HTML for our Web form.

® There is nothing out of the ordinary here - just basic HTML defining the city, state, and ZIP
code.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://
www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<title>ZIP Code to City and State using XmlHttpRequest</title>
</head>
<body>
<form action="post">
<p>
ZIP code:
<input type="text" size="5" name="zip" id="zip" />
</p>
City:
<input type="text" name="city" id="city" />
State:
<input type="text" size="2" name="state" id="state" />
</form>
</body></html>

A sample and full application - Step #2

® Add an onblur event handler function named updateCityState()
® This event handler is called whenever the ZIP code field loses focus.
onblur="updateCityState();"

The updateCityState() function will be in charge
of asking the server what the city and state is for a given Zip code.

® For now, this function does nothing.

<script language="javascript" type="text/javascript">

function updateCityState() { /* does nothing...yet! */}

</script>

</head><body>

<form action="post">

<p>ZIP code:

<input type="text" size="5" name="zip" id="zip" onblur="updateCityState();" />

A sample and full application

Of course we need to create an XMLHttpRequest object.

- Step #3

function getHTTPObject() {
var xmlhttp;
if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {
try {
xmlhttp = new XMLHttpRequest();
} catch (e) {
xmlhttp = false;
}
}
return xmlhttp;

}
var http = getHTTPObject(); // We create the HTTP Object

A sample and full application - Step #4

Now add the code that makes the round trip to the server.
WVe first specify the URL for the server-side script:
getCityState.php?param=

This URL will then have the ZIP Code appended to it so that the ZIP code is passed as an
HTTP GET parameter named param

This means that if a user types in the ZIP code of 17534, the resulting URL would be
getCityState.php?param=17534.

Before we send the HT TP request, we specify the onreadystatechange property
® The name of our new function handleHttpResponse().

® This means that every time the HTTP ready state has changed, our function
handleHttpResponse() is called.

Our new function handleHttpResponse() sits there waiting to be called and when it does get

A sample and full application - Step #4

called, it check to see if the readState is equal to 4.

Since the request is complete, it is now fair game to grab the response text (responseText)

If it is equal to 4 this means that the request is complete.

® unpack it,
® set the city and state form fields to the returned values
var url = "getCityState.php?param="; // The server-side script
function handleHttpResponse() {
if (http.readyState == 4) {
// Split the comma delimited response into an array
results = http.responseText.split(",");
document.getElementById('city').value = results[0];
document.getElementById('state').value = results[1l];
}
}

function updateCityState() {
var zipValue = document.getElementById("zip").value;
http.open("GET", url + escape(zipValue), true);
http.onreadystatechange = handleHttpResponse;
http.send(null);

}

A sample and full application - Step #5
® |ets now create a PHP file named getCityState.php
® All this file does is return “Catania, Italy” as the city and state.
® This means that anytime the focus leaves the ZIP code field

® The city and state will be automatically set to Catania, Itay

<?php echo "Catania, Italy"; ?>

¢ @home: get results from a text file with the following format

CITY:STATE

e HTML Part;

AJAX Suggest

<form>
First Name: <input type="text" id="txtl"

</form>

<p>Suggestions:
</p>

onkeyup="showHint (this.value)"/>

AJAX Suggest

® JavaScript Part:

function showHint(str) {

if (str.length==0) {
document.getElementById("txtHint").innerHTML="";
return;

}

http=GetXmlHttpObject();

if (http==null) {
alert ("Your browser does not support XMLHttpRequest!");
return;

}

var url="gethint.php";

url=url+"?g="+str;

url=url+"&sid="+Math.random();

http.onreadystatechange=stateChanged;

http.open("GET",url,true);

http.send(null);

}

AJAX Suggest

® JavaScript Part2:

function stateChanged() {
if (http.readyState==4) {
document.getElementById("txtHint").innerHTML=http.responseText;
}

}

AJAX Suggest
® PHP Part:

<?php
// Fill up array with names
Sa[]="Anna";S$a[]="Barbara";S$a[]="Cinzia";S$Sa[]="Diana";$a[]="Elisa";
$//get the q parameter from URL
$q=$_GET["q"];
//lookup all hints from array if length of g>0
if (strlen(S$Sq) > 0) {
Shint="";
for($i=0; S$i<count($a); S$i++) {
if (strtolower($q)==strtolower(substr($a[$i],0,strlen($q)))){
if (Shint==""){
$hint=$a[$i];
} else {
Shint=$hint." , ".$a[$i];
}
}
}
}

// Set output to "no suggestion" if no hint were found
if ($hint == "") {

Sresponse="no suggestion";
} else {

Sresponse=$hint;
}
//output the response
echo Sresponse;
?>

JSON:What does it stand for?

® JavaScript Object Notation
® JSON is a syntax for passing around objects that
® contain name/value pairs
® arrays
® other objects

{"skillz": {
llweb" : [

{"name": "html",
llyears": ll5|l

}y

{Ilname": Ilcssll,
llyearsll: Il3ll

}

"database": [

{llname": llsqlll,

llyearsll: Il7ll

]
+}

Squiggles, Squares, Colons and Commas

Squiggly brackets act as 'containers'
Square brackets holds arrays
Names and values are separated by a colon.

Array elements are separated by commas

Think "XML with Anorexia'

JSON is like XML because:

They are both 'self-describing' meaning that values are named, and
thus 'human readable’

Both are hierarchical. (i.e.You can have values within values.)
Both can be parsed and used by lots of programming languages

Both can be passed around using AJAX (i.e. httpVVebRequest)

JSON is UNIlike XML because:

XML uses angle brackets, with a tag name at the start and end of an
element: JSON uses squiggly brackets with the name only at the
beginning of the element.

JSON is less verbose so it's definitely quicker for humans to write,
and probably quicker for us to read.

JSON can be parsed trivially using the eval() procedure in JavaScript

JSON includes arrays {where each element doesn't have a name of
its own}

In XML you can use any name you want for an element, in JSON
you can't use reserved words from javascript

The Object: An Introduction
Behold, an Object

var myFirstObject = {};

The old way to create a new object was to use the “new’’ keyword.

var myJSON = new Object();

This method has been deprecated now in favor of simply defining
an empty object with squigly braces.

var myJSON = {};

® A Javascript Object is a very flexible and
expressed as

® “name/value pairs”

Objects as Data

robust data format

® That is,an object holds a name which is an object's property

® Think of it as a plain old variable name that's attached to the

object name.

name

® And the object holds the value of that
var myFirstJSON = { "firstName" : "Mario",
"lastName" : "Rossi",

"age" : 23 };

document.writeln(myFirstJSON.firstName);
document.writeln(myFirstJSON.lastName);
document.writeln(myFirstJSON.age);

// Outputs Mario
// Outputs Rossi
// Outputs 23

Objects as Data

var myFirstJSON = { "firstName" : "Mario",
"lastName" : "Rossi",
"age" : 23 };

® This data format is called JSON for JavaScript Object Notation.

® What makes it particularly powerful is that since the value can be

any data type

® you can store other arrays and other objects

® nesting them as deeply as you need

Objects as Data

var employees = { "accounting" : [// accounting is an array in employees.
{ "firstName" "Mario", // First element
"lastName" "Rossi",
"age" 23 },
{ "firstName" "Luca", // Second Element
"lastName" "Verdi",
"age" 32 }
1, // End "accounting" array.
"sales" [// Sales is another array in employees.
{ "firstName" "Mario", // First Element
"lastName" "Biondi",
"age" 27 },
{ "firstName" "Marco", // Second Element

} // End Employees

"lastName"

age : 41 }
] // End "sales" Array.

"Arancio",

employees is an object.

® That object has two properties or name/value pairs.

accounting is an array which holds two JSON objects showing the names and age of 2 employees.

sales is also an array which holds two JSON objects showing the name and ago of the two employees who

work in sales.

All of this data exists within the employees object.

Accessing Data In JSON

® The most common way to access |[SON data is

through dot notation

This is simply the object name followed by a period and then
followed by the name/property you would like to access.

var myObject = {

'color' :

document.writeln(myObject.color);

'blue' };

// outputs blue.

If your object contains an object then just add another period

and name

'color'
'animal'

}i

var myObject = {

: 'blue'’,
: {'dog' :

document.writeln(myObject.animal.dog);

"friendly' }

// outputs friendly

Accessing Data In JSON

® Using the “employee” example above

® if we wanted to access the first person who worked in sales

document.writeln(employees.sales[0].firstName + ' ' +
employees.sales[0].lastName);

® We can also access the second person who works in
“accounting”

document.writeln(employees.accounting[l].firstName + ' ' +
employees.accounting[1l].lastName);

Recap
® to recap...
® The “employee” example is an object which holds two arrays
® each of which holds two additional objects.

® The only limits to the structure are the amount of storage and
memory available to it.

® Because JSON can store objects within objects within objects
and arrays within arrays that can also store objects

® There is no virtual limit to what a JSON object can store.

® Given enough memory and storage requirement, a simple]SON
data structure can store, and properly index, all the information
ever generated by humanity.

Simulating An Associative Array

® You can also access [SON data as if it were an Associative Array.

var myFirstJSON = { "firstName" : "Mario",

"lastName" : "Rossi",

"age" : 23 };
document.writeln(myFirstJSON["firstName"]); // Outputs Mario
document.writeln(myFirstJSON["lastName"]); // Outputs Rossi
document.writeln(myFirstJSON["age"]); // Outputs 23

® Be aware that this is NOT an associative array, however it appears.

® If you attempt to loop through myFirstObject you will get in addition to the
three properties above

® any methods or prototypes assigned to the object
® you're more than free to use this method of addressing JSON data
® just treat it for what it is (Object Properties)

® and not for what it is not (Associative Array)

Receiving JSON via AJAX

® There are three seperate ways to receive JSON data via AJAX.
® Assignment

® (allback

® Parse

JSON Via Assignment

® There's no standard naming convention for these methods

® however “assignment method” is a good descriptive name

® The file comming in from the server creates a javascript

® which will assign the JSON object to a variable

® when the responseText from the server is passed through eval

® someVar will be loaded with the |[SON object

® you can access it from there.

JSON Via Assignment

// example of what is received from the server.
var JSONFile = "someVar = { 'color' : 'blue' }";

// Execute the javascript code contained in JSONFile.
eval (JSONFile);

// It’'s amazing!
document.writeln(someVar.color); // Outputs 'blue'’

® When the responseText from the server is passed through eval
® someVar will be loaded with the J[SON object

® you can access it from there.

JSON Via Callback

® The second method calls a pre-defined function

® passing the JSON data to that function as the first argument
® A good name for this method is the “callback method”

® used extensively when dealing with third party JSON files

® (IE,JSON data from domains you do not control).

function processData(incommingJSON) {
document.writeln(incommingJSON.color); // Outputs 'blue'’

}

// example of what is received from the server...
var JSONFile = "processData({ 'color' : 'blue' })";

eval (JSONFile);

JSON Via Parse

® As JSON is just a string of text
® it needs to be converted to an object before to make it useful.
® Although this can be done in JavaScript with the eval() function
® |t is safer to use a JSON parser
® You can download the JavaScript]SON parser at
® http://www.json.org/json.js

® Including this file on a web page allows you to take
advantage of the]SON object

JSON.parse(strJSON) - converts a JSON string into a JavaScript object.
JSON.stringify (objJSON) - converts a JavaScript object into a JSON string.

JSON and PHP

® As of PHP 5.2.0, the J[SON extension is bundled and compiled into
PHP by default.

® Decoding [SON string is very simple with PHP
® Only one line of code is needed to parse string into object.

® Similary only one function is needed to encode PHP object or
array into JSON string

<?php // decode JSON string to PHP object
Sdecoded = json decode($ GET['json']); ?>

// create response object
$json = array();

$json['errorsNum'] = 2;
$json['error'] = array();
$json['error'][] = 'Wrong email!';

$json['error'][] 'Wrong hobby!';

// encode array $json to JSON string
$encoded = json_encode(S$json);

AJAX database example

® The HTML page contains a link to an external JavaScript,an HTML
form, and a div element:

<html>
<head>
<script type="text/javascript" src="selectuser.js"></script>
</head>
<body>

<form>

Select a User:

<select name="users" onchange="showUser(this.value)">
<option value="1">Peter Griffin</option>

<option value="2">Lois Griffin</option>

<option value="3">Glenn Quagmire</option>

<option value="4">Joseph Swanson</option>

</select>

</form>

<div id="txtHint">Person info will be listed here.</div>

</body>
</html>

AJAX database example - The JavaScript

var xmlhttp;
function showUser(str) {
xmlhttp=GetXmlHttpObject();
if (xmlhttp==null) {
alert ("Browser does not support HTTP Request");
return;
}
var url="getuser.php";
url=url+"?g="+str;
url=url+"&sid="+Math.random();
xmlhttp.onreadystatechange=stateChanged;
xmlhttp.open("GET",url, true);
xmlhttp.send(null);
}
function stateChanged() {
if (xmlhttp.readyState==4) {
document.getElementById("txtHint").innerHTML=xmlhttp.responseText;
}

}
function GetXmlHttpObject() {

if (window.XMLHttpRequest) {
// code for IE7+, Firefox, Chrome, Opera, Safari
return new XMLHttpRequest();
}
if (window.ActiveXObject) {
// code for IE6, IE5
return new ActiveXObject("Microsoft.XMLHTTP");
}

return null;

AJAX database example - The

<?php
$q=$_GET[nqu] ;

$con = mysql_connect('localhost', 'peter', 'abcl23');
if (!S$Scon) {
die('Could not connect:

}

. mysql error());

mysql_select_db("ajax_demo", $con);
$sql="SELECT * FROM user WHERE id = '".$q."'";
$result = mysql_query($sql);

echo "<table border='1'>
<tr>

<th>Firstname</th>
<th>Lastname</th>
<th>Age</th>
<th>Hometown</th>
<th>Job</th>

</tr>";

while($row = mysql_fetch_array($result)) ({
echo "<tr>";

echo "<td>" . $row['FirstName'] . "</td>";
echo "<td>" . $row['LastName'] . "</td>";
echo "<td>" . Srow['Age'] . "</td>";
echo "<td>" . $row['Hometown'] . "</td>";
echo "<td>" . Srow['Job'] . "</td>";
echo "</tr>";

}

echo "</table>";

mysql_close($con);
?>

PHP Page

