
JavaScript +
 PHP

Costantino Pistagna
<pistagna@dmi.unict.it>

AJAX

What’s is Ajax?

• AJAX is not a new programming language

• It’s a new technique for better and faster web applications.

• JavaScript can communicate directly with the server.

• with the XMLHttpRequest object.

• JavaScript can trade data with webServer

• without reloading the page.

Ajax Technologies

• AJAX uses asynchronous data transfer

• HTTP requests

• between the browser and the web server

• Request small bits of information from the server

• instead of whole pages

• speed++

• interaction

• AJAX makes Internet applications

• smaller, faster and more user-friendly.

AJAX Standards

• AJAX is based on the following web standards:

• JavaScript

• XML / JSON

• HTML

• CSS

The XMLHttpRequest object

• To get or send information from/to a server with traditional JavaScript

• Make an HTML form

• Click the "Submit" button to send/get the information

• Wait for the server to respond

• Then a new page will load with the results

• The server returns a new page each time the user submits input

• Traditional web applications can run slowly

• Tend to be less user-friendly

The XMLHttpRequest object

• With AJAX, your JavaScript communicates directly with the server,

• Through the JavaScript XMLHttpRequest object.

• XMLHttpRequest makes a request and get a response from server

• without reloading the page.

• The user will stay on the same page

• he will not notice that scripts request pages

• data to server in background.

• Introduces some things that were otherwise impossible

• HEAD requests

How does it work?

• Instead of a user request being made to server via

• HTTP POST or GET request

• such as would be made by submitting a form

• An Ajax script makes a request to the server

• by using the Javascript XMLHTTPRequest object

• This object may be unfamiliar to many

• it behaves like a fairly ordinary javascript object!

How does it work?

• When using a javascript image object...

• We may dynamically change the URL of the image
source

• Without using a page refresh.

• XMLHTTPRequest retrieves information from the
server in a similarly invisible manner.

Why XML HTTP Request object?

• Whilst the object is called the XML HTTP Request object

• it is not limited to being used with XML

• it can request or send any type of document

• Dealing with binary streams can be problematical in javascript.

• we will see the JSON alternative

Ajax Events

• Ajax uses a programming model with

• display and events

• These events are user actions

• they call functions associated to elements of the web page

• Interactivity is achieved with forms and buttons.

• DOM allows to link elements of the page with actions and also to
extract data from XML files provided by the server.

XMLHttpRequest Methods

• To get data on the server, XMLHttpRequest provides two methods:
- open: create a connection.
- send: send a request to the server.

• Data by the server will be found in the attributes of the
XMLHttpRequest object:
- responseXml for an XML file or
- responseText!for a plain text.

• Take note that a new XMLHttpRequest object has to be created
for each new file to load.

• We have to wait for the data to be available to process it

• The state of availability of data is given by the readyState
attribute of XMLHttpRequest.

How is it coded?

• We need to know how to create an XMLHTTPRequest object.!

• The process differs slightly

• if you are using Internet Explorer (5+)!with ActiveX enabled

• or a standards-compliant browser such as Mozilla Firefox.

• With IE, the request looks like:

• In a standards browser we can instantiate the object directly:

http = new ActiveXObject("Microsoft.XMLHTTP");

http = new XMLHttpRequest();

Our Implementation

function getHTTPObject() {

if (typeof XMLHttpRequest != 'undefined') {

return new XMLHttpRequest();

}

try {

return new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

try {

return new ActiveXObject("Microsoft.XMLHTTP");

} catch (e) {}

}

return false;

}

Our Implementation

• We need to write an event handler

• which will be called via some event on our user's page

• Will handle sending our request for data to our server

• The event handler will use methods of XMLHTTPRequest object:

• Make the request of the server

• Check when the server has completed the request

• Deal with the information returned by the server

Our Implementation

• For example,

• We can make our request of the server by using a GET method
to an appropriate server-side script.!

• Assuming that we have created our XMLHTTPRequest object
and called it!http:

var http = getHTTPObject();

http.open("GET", "http://example.org/test.txt", true);

http.onreadystatechange = function() {

! if (http.readyState == 4) {

! ! doSomethingWith(http.responseText);

! }

}

http.send(null);

Our Implementation

• The function listens to the onreadystatechange property

• each time this parameter changes

• calls a further function

• We said little about the server-side script which is called

• Essentially this can be any server routine which will generate the
required output when called with the relevant URL and
appended parameters

• as in any other HTTP GET request.!

Handling data: readyState

• We need to write a function useHttpResponse

• will establish when the server has completed our request

• and do something useful with the data it has returned:

function useHttpResponse() {

" if (http.readyState == 4) {

""" var textout = http.responseText;

""" document.write.textout;

" }

}

Handling data: readyState

• Our function checks for a readyState value of 4

• there are various numbered states describing the progress of such
a request

• tipically, we are interested in the value of 4

• which indicates that the request is complete and we can use the
returned data.

• 0: not initialized.

1: connection established.

2: request received.

3: answer in process.

4: finished.

responseText

• We have received our information as simple text

• via the responseText property of our XMLHTTPRequest object

• Information can be returned as XML

• or as properties of a predefined javascript object

var textout = http.responseText;

Example: Get a text

<html><head><script>

function submitForm(){

var http;

try { http = new ActiveXObject('Msxml2.XMLHTTP'); }

catch (e) {

try { http = new ActiveXObject('Microsoft.XMLHTTP'); }

catch (e2) {

try { http = new XMLHttpRequest(); }

catch (e3) { http = false; }

}

}

http.onreadystatechange = function() {

if(http.readyState == 4) {

if(http.status == 200)

document.ajax.dyn="Received:" + http.responseText;

else

document.ajax.dyn="Error code " + http.status;

}

};

 ""http.open(GET, "data.txt", true);

 http.send(null);

}
</script></head>

<body>

 <FORM method="POST" name="ajax" action="">

 <INPUT type="BUTTON" value="Submit" ONCLICK="submitForm()">

 "<INPUT type="text" name="dyn" value="">

 </FORM>
</body></html>

Get from XML

• To get data from an XML file, we have just to replace this line:

• by this code:

document.ajax.dyn="Received:" + http.responseText;

// Assign the XML file to a var

var doc = http.responseXML;

// Read the first element

var element = doc.getElementsByTagName('root').item(0);

// Assign the content to form

document.ajax.dyn.value= element.firstChild.data;

Write to body

• In this demo, the text read is put into the body of the page

• not into a textfield

• The code below replaces the textfield form object

• the second part replaces the assignment into the JavaScript
function.

<div id="zone">

 "... some text to replace ...

 </div>

document.getElementById("zone").innerHTML = "Received:" + http.responseText;

Post a text

• In this demo, a text is sent to the server and is written into a file.

• The call to the "open" method changes

• the argument is POST

• the url is the name of a file or script that receives the data sent

• the "send" method has now a value as argument that is a string
of parameters.

http.open("POST", "ajax-post-text.php", true);

http.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

http.send(data);

Post a text

• The parameter of the send method is in the format of the HTML
POST method.

• When several values are sent, they are separated by the ampersand
symbol:

var data = "file=" + url + "&content=" + content;

A sample and full application - Step #1

• Creating the form

• We first create a simple webpage that has the HTML for our Web form.

• There is nothing out of the ordinary here - just basic HTML defining the city, state, and ZIP
code.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://

www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title>ZIP Code to City and State using XmlHttpRequest</title>

</head>

<body>

<form action="post">

 <p>

 ZIP code:

 <input type="text" size="5" name="zip" id="zip" />

 </p>

 City:

 <input type="text" name="city" id="city" />

 State:

 <input type="text" size="2" name="state" id="state" />

</form>

</body></html>

A sample and full application - Step #2

• Add an onblur event handler function named updateCityState()

• This event handler is called whenever the ZIP code field loses focus.

• onblur="updateCityState();"

• The updateCityState() function will be in charge
of asking the server what the city and state is for a given Zip code.

• For now, this function does nothing.

...

<script language="javascript" type="text/javascript">

function updateCityState() { /* does nothing...yet! */}

</script>

</head><body>

<form action="post">

<p>ZIP code:

<input type="text" size="5" name="zip" id="zip" onblur="updateCityState();" />

...

A sample and full application - Step #3

• Of course we need to create an XMLHttpRequest object.

function getHTTPObject() {

 var xmlhttp;

 if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

 try {

 xmlhttp = new XMLHttpRequest();

 } catch (e) {

 xmlhttp = false;

 }

 }

 return xmlhttp;

}

var http = getHTTPObject(); // We create the HTTP Object

A sample and full application - Step #4

• Now add the code that makes the round trip to the server.

• We first specify the URL for the server-side script:

• getCityState.php?param=

• This URL will then have the ZIP Code appended to it so that the ZIP code is passed as an
HTTP GET parameter named param

• This means that if a user types in the ZIP code of 17534, the resulting URL would be
getCityState.php?param=17534.

• Before we send the HTTP request, we specify the onreadystatechange property

• The name of our new function handleHttpResponse().

• This means that every time the HTTP ready state has changed, our function
handleHttpResponse() is called.

A sample and full application - Step #4

• Our new function handleHttpResponse() sits there waiting to be called and when it does get
called, it check to see if the readState is equal to 4.

• If it is equal to 4 this means that the request is complete.

• Since the request is complete, it is now fair game to grab the response text (responseText)

• unpack it,

• set the city and state form fields to the returned values

var url = "getCityState.php?param="; // The server-side script

function handleHttpResponse() {

 if (http.readyState == 4) {

 // Split the comma delimited response into an array

 results = http.responseText.split(",");

 document.getElementById('city').value = results[0];

 document.getElementById('state').value = results[1];

 }

}

function updateCityState() {

 var zipValue = document.getElementById("zip").value;

 http.open("GET", url + escape(zipValue), true);

 http.onreadystatechange = handleHttpResponse;

 http.send(null);

 }

A sample and full application - Step #5

• Lets now create a PHP file named getCityState.php

• All this file does is return “Catania, Italy” as the city and state.

• This means that anytime the focus leaves the ZIP code field

• The city and state will be automatically set to Catania, Itay

• @home: get results from a text file with the following format

...

<?php echo "Catania, Italy"; ?>

...

...

CITY:STATE

...

AJAX Suggest

• HTML Part:

<form>

First Name: <input type="text" id="txt1"

 onkeyup="showHint(this.value)"/>

</form>

<p>Suggestions:

</p>

AJAX Suggest

• JavaScript Part:

function showHint(str) {

if (str.length==0) {

" document.getElementById("txtHint").innerHTML="";

" return;

}

http=GetXmlHttpObject();

if (http==null) {

" alert ("Your browser does not support XMLHttpRequest!");

" return;

}

var url="gethint.php";

url=url+"?q="+str;

url=url+"&sid="+Math.random();

http.onreadystatechange=stateChanged;

http.open("GET",url,true);

http.send(null);

}

AJAX Suggest

• JavaScript Part2:

function stateChanged() {

if (http.readyState==4) {

document.getElementById("txtHint").innerHTML=http.responseText;

" }

}

AJAX Suggest

• PHP Part:

<?php

// Fill up array with names

$a[]="Anna";$a[]="Barbara";$a[]="Cinzia";$a[]="Diana";$a[]="Elisa";

$//get the q parameter from URL

$q=$_GET["q"];

//lookup all hints from array if length of q>0

if (strlen($q) > 0) {

 $hint="";

 for($i=0; $i<count($a); $i++) {

 if (strtolower($q)==strtolower(substr($a[$i],0,strlen($q)))){

 if ($hint==""){

 $hint=$a[$i];

 } else {

 $hint=$hint." , ".$a[$i];

 }

 }

 }

}

// Set output to "no suggestion" if no hint were found

if ($hint == "") {

 $response="no suggestion";

} else {

 $response=$hint;

}

//output the response

echo $response;

?>

JSON: What does it stand for?

• JavaScript Object Notation

• JSON is a syntax for passing around objects that

• contain name/value pairs

• arrays

• other objects

{"skillz": {

! "web":[

! ! {"name": "html",

! ! "years": "5"

! ! },

! ! {"name": "css",

! ! "years": "3"

! ! }]

! "database":[

! ! {"name": "sql",

! ! "years": "7"

! ! }]

}}

Squiggles, Squares, Colons and Commas

• Squiggly brackets act as 'containers'

• Square brackets holds arrays

• Names and values are separated by a colon.

• Array elements are separated by commas

• Think 'XML with Anorexia'

JSON is like XML because:

• They are both 'self-describing' meaning that values are named, and
thus 'human readable'

• Both are hierarchical. (i.e. You can have values within values.)

• Both can be parsed and used by lots of programming languages

• Both can be passed around using AJAX (i.e. httpWebRequest)

JSON is UNlike XML because:

• XML uses angle brackets, with a tag name at the start and end of an
element: JSON uses squiggly brackets with the name only at the
beginning of the element.

• JSON is less verbose so it's definitely quicker for humans to write,
and probably quicker for us to read.

• JSON can be parsed trivially using the eval() procedure in JavaScript

• JSON includes arrays {where each element doesn't have a name of
its own}

• In XML you can use any name you want for an element, in JSON
you can't use reserved words from javascript

The Object: An Introduction

• Behold, an Object

• The old way to create a new object was to use the “new” keyword.

• This method has been deprecated now in favor of simply defining
an empty object with squigly braces.

var myFirstObject = {};

var myJSON = new Object();

var myJSON = {};

Objects as Data

• A Javascript Object is a very flexible and robust data format
expressed as

• “name/value pairs”

• That is, an object holds a name which is an object's property

• Think of it as a plain old variable name that's attached to the
object name.

• And the object holds the value of that name

var myFirstJSON = { "firstName" : "Mario",

" " " " " " " " " " "lastName" ": "Rossi",

" " " " " " " " " " "age" " " " : 23 };

document.writeln(myFirstJSON.firstName); "// Outputs Mario

document.writeln(myFirstJSON.lastName); " // Outputs Rossi

document.writeln(myFirstJSON.age); " " " "// Outputs 23

Objects as Data

• This data format is called JSON for JavaScript Object Notation.

• What makes it particularly powerful is that since the value can be
any data type

• you can store other arrays and other objects

• nesting them as deeply as you need

var myFirstJSON = { "firstName" : "Mario",

" " " " " " " " " " "lastName" ": "Rossi",

" " " " " " " " " " "age" " " " : 23 };

Objects as Data

• employees is an object.

• That object has two properties or name/value pairs.

• accounting is an array which holds two JSON objects showing the names and age of 2 employees.

• sales is also an array which holds two JSON objects showing the name and ago of the two employees who
work in sales.

• All of this data exists within the employees object.

var employees = { "accounting" : [" // accounting is an array in employees.

" " " " " " " " " " " " " " " " " " { "firstName" : "Mario", "// First element

" " " " " " " " " " " " " " " " " " " "lastName" ": "Rossi",

" " " " " " " " " " " " " " " " " " " "age" " " " : 23 },

" " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " { "firstName" : "Luca", "// Second Element

" " " " " " " " " " " " " " " " " " " "lastName" ": "Verdi",

" " " " " " " " " " " " " " " " " " " "age" " " " : 32 }

" " " " " " " " " " " " " " " " "], // End "accounting" array. " " " " " " " " " " " " " " " " "

" " " " " " " " " "sales" " " " : [// Sales is another array in employees.

" " " " " " " " " " " " " " " " " " { "firstName" : "Mario", // First Element

" " " " " " " " " " " " " " " " " " " "lastName" ": "Biondi",

" " " " " " " " " " " " " " " " " " " "age" " " " : 27 },

" " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " { "firstName" : "Marco", " // Second Element

" " " " " " " " " " " " " " " " " " " "lastName" ": "Arancio",

" " " " " " " " " " " " " " " " " " " "age" " " " : 41 }

" " " " " " " " " " " " " " " " "] // End "sales" Array.

" " " " " " " " } // End Employees

Accessing Data In JSON

• The most common way to access JSON data is

• through dot notation

• This is simply the object name followed by a period and then
followed by the name/property you would like to access.

• If your object contains an object then just add another period
and name

var myObject = { 'color' : 'blue' };

document.writeln(myObject.color); // outputs blue.

var myObject = { 'color' : 'blue',

" " " " " " " " "'animal' : {'dog' : 'friendly' }

" " " " " " " "};

document.writeln(myObject.animal.dog); // outputs friendly

Accessing Data In JSON

• Using the “employee” example above

• if we wanted to access the first person who worked in sales

• We can also access the second person who works in
“accounting”

document.writeln(employees.sales[0].firstName + ' ' +

employees.sales[0].lastName);

document.writeln(employees.accounting[1].firstName + ' ' +

employees.accounting[1].lastName);

Recap

• to recap...

• The “employee” example is an object which holds two arrays

• each of which holds two additional objects.

• The only limits to the structure are the amount of storage and
memory available to it.

• Because JSON can store objects within objects within objects
and arrays within arrays that can also store objects

• There is no virtual limit to what a JSON object can store.

• Given enough memory and storage requirement, a simple JSON
data structure can store, and properly index, all the information
ever generated by humanity.

Simulating An Associative Array

• You can also access JSON data as if it were an Associative Array.

• Be aware that this is NOT an associative array, however it appears.

• If you attempt to loop through myFirstObject you will get in addition to the
three properties above

• any methods or prototypes assigned to the object

• you're more than free to use this method of addressing JSON data

• just treat it for what it is (Object Properties)

• and not for what it is not (Associative Array)

var myFirstJSON = { "firstName" : "Mario",

" " " " " " " " " " "lastName" ": "Rossi",

" " " " " " " " " " "age" " " " : 23 };

document.writeln(myFirstJSON["firstName"]); "// Outputs Mario

document.writeln(myFirstJSON["lastName"]); " // Outputs Rossi

document.writeln(myFirstJSON["age"]); " " " "// Outputs 23

Receiving JSON via AJAX

• There are three seperate ways to receive JSON data via AJAX.

• Assignment

• Callback

• Parse

JSON Via Assignment

• There's no standard naming convention for these methods

• however “assignment method” is a good descriptive name

• The file comming in from the server creates a javascript

• which will assign the JSON object to a variable

• when the responseText from the server is passed through eval

• someVar will be loaded with the JSON object

• you can access it from there.

JSON Via Assignment

• When the responseText from the server is passed through eval

• someVar will be loaded with the JSON object

• you can access it from there.

// example of what is received from the server.

var JSONFile = "someVar = { 'color' : 'blue' }"; "

// Execute the javascript code contained in JSONFile.

eval(JSONFile);

// It’s amazing!

document.writeln(someVar.color); // Outputs 'blue'

JSON Via Callback

• The second method calls a pre-defined function

• passing the JSON data to that function as the first argument

• A good name for this method is the “callback method”

• used extensively when dealing with third party JSON files

• (IE, JSON data from domains you do not control).

function processData(incommingJSON) {

" "document.writeln(incommingJSON.color); // Outputs 'blue'

}

// example of what is received from the server...

var JSONFile = "processData({ 'color' : 'blue' })";

eval(JSONFile);

JSON Via Parse

• As JSON is just a string of text

• it needs to be converted to an object before to make it useful.

• Although this can be done in JavaScript with the eval() function

• It is safer to use a JSON parser

• You can download the JavaScript JSON parser at

• http://www.json.org/json.js

• Including this file on a web page allows you to take
advantage of the JSON object

JSON.parse(strJSON) - converts a JSON string into a JavaScript object.

JSON.stringify(objJSON) - converts a JavaScript object into a JSON string.

JSON and PHP

• As of PHP 5.2.0, the JSON extension is bundled and compiled into
PHP by default.

• Decoding JSON string is very simple with PHP

• Only one line of code is needed to parse string into object.

• Similary only one function is needed to encode PHP object or
array into JSON string

<?php // decode JSON string to PHP object

$decoded = json_decode($_GET['json']); ?>

// create response object

$json = array();

$json['errorsNum'] = 2;

$json['error'] = array();

$json['error'][] = 'Wrong email!';

$json['error'][] = 'Wrong hobby!';

"

// encode array $json to JSON string

$encoded = json_encode($json);

AJAX database example

• The HTML page contains a link to an external JavaScript, an HTML
form, and a div element:

<html>

<head>

<script type="text/javascript" src="selectuser.js"></script>

</head>

<body>

<form>

Select a User:

<select name="users" onchange="showUser(this.value)">

<option value="1">Peter Griffin</option>

<option value="2">Lois Griffin</option>

<option value="3">Glenn Quagmire</option>

<option value="4">Joseph Swanson</option>

</select>

</form>

<div id="txtHint">Person info will be listed here.</div>

</body>

</html>

AJAX database example - The JavaScript

var xmlhttp;

function showUser(str) {

xmlhttp=GetXmlHttpObject();

if (xmlhttp==null) {

""alert ("Browser does not support HTTP Request");

""return;

}

var url="getuser.php";

url=url+"?q="+str;

url=url+"&sid="+Math.random();

xmlhttp.onreadystatechange=stateChanged;

xmlhttp.open("GET",url,true);

xmlhttp.send(null);

}

function stateChanged() {

if (xmlhttp.readyState==4) {

document.getElementById("txtHint").innerHTML=xmlhttp.responseText;

}

}

function GetXmlHttpObject() {

if (window.XMLHttpRequest) {

" // code for IE7+, Firefox, Chrome, Opera, Safari

" return new XMLHttpRequest();

}

if (window.ActiveXObject) {

 // code for IE6, IE5

" return new ActiveXObject("Microsoft.XMLHTTP");

}

return null;

}

AJAX database example - The PHP Page
<?php

$q=$_GET["q"];

$con = mysql_connect('localhost', 'peter', 'abc123');

if (!$con) {

""die('Could not connect: ' . mysql_error());

}

mysql_select_db("ajax_demo", $con);

$sql="SELECT * FROM user WHERE id = '".$q."'";

$result = mysql_query($sql);

echo "<table border='1'>

<tr>

<th>Firstname</th>

<th>Lastname</th>

<th>Age</th>

<th>Hometown</th>

<th>Job</th>

</tr>";

while($row = mysql_fetch_array($result)) {

""echo "<tr>";

""echo "<td>" . $row['FirstName'] . "</td>";

""echo "<td>" . $row['LastName'] . "</td>";

""echo "<td>" . $row['Age'] . "</td>";

""echo "<td>" . $row['Hometown'] . "</td>";

""echo "<td>" . $row['Job'] . "</td>";

""echo "</tr>";

}

echo "</table>";

mysql_close($con);

?>

