
Processing Multiple Selections with PHP

• The following HTML fragment creates a Select input in which multiple car types may
be selected by the user:

• Until now we have only concerned ourselves with data which only holds one value

• In this case there is the potential for multiple data values to be associated with a single
form element.

• The way PHP handles this is to place the multiple selections in an array

<select name="carBrands" size=5 multiple>

<option value="Ford" SELECTED>Ford Motor Company

<option value="GM">General Motors

<option value="Honda">Honda Motor Company

<ottion value="Toyota">Toyota Motor Company

<option value="Ford">Jaguar

<option value="Mazda">Mazda

<option value="Volvo">Volvo

</select>

Processing Multiple Selections with PHP

• Before that happens, however, we need to make a small modification to our
declaration of the HTML Select element.

• All we need to do to turn this data into an array is to place [] after the element name:

• Now, in our server side PHP script we can extract the selected items from this array:

<select name="carBrands[]" size=5 multiple>
<option value="Ford" SELECTED>Ford Motor Company

<option value="GM">General Motors

<option value="Honda">Honda Motor Company

<ottion value="Toyota">Toyota Motor Company

<option value="Ford">Jaguar

<option value="Mazda">Mazda

<option value="Volvo">Volvo

</select>

 print_r($_POST['carBrands']);

Create a PHP Array

• Arrays are created using the array() function.

• The array() function takes zero or more arguments

• returns the new array which is assigned to a variable using the assignment operator
(=)

• If arguments are provided they are used to initialize the array with data.

• PHP arrays grow and shrink dynamically as items are added and removed

• it is not necessary to specify the array size at creation time

<?php

 $colorArray = array();

?>

Create a PHP Array

• Alternatively, we can create an array pre-initialized with values by providing the values
as arguments to the array() function:

<?php

 $colorArray = array("Red", "Yellow", "Green", "Blue", "Indigo");

?>

Accessing Elements in a PHP Array

• The elements in a PHP numerical key type array are accessed by referencing the
variable containing the array

• followed by the index into array of the required element enclosed in square
brackets ([])

• The above echo command will output the value in index position 1 of the array

• in this case the string "Yellow".

<?php

$colorArray = array("Red", "Yellow", "Green", "Blue", "Indigo");

echo $colorArray[1];

?>

Creating an Associative Array

• An associative array assigns names to positions in the array.

• This provides a more human friendly way to access array elements

• Once again, the array() function is used to create the array

• with optional arguments to pre-initialize the array elements.

• The arguments are of the form key=>value

• where key is the name by which the element will be referenced

• value is the value to be stored in that position in the array

<?php

$customerArray = array('customerName'=>'John Smith',

'customerAddress'=>'1 The Street', 'accountNumber'=>'123456789');

?>

Accessing Elements of an Associative Array

• We can use those names to access the corresponding array values.

• We can, therefore, extend our previous example to extract the customer name from
our $customerArray:

<?php

$customerArray = array('customerName'=>'John Smith',

'customerAddress'=>'1 The Street', 'accountNumber'=>'123456789');

echo $customerArray['customerName'];

?>

Creating Multidimensional PHP Arrays

• A multidimensional PHP array is nothing more than an array

• in which each array element is itself an array.

• A multidimensional array can, therefore, be thought of as a table

• where each element in the parent array represents a row of the table

• the elements of each child array represent the columns of the row.

<?php

$books = array();

$books[0] = array('title'=>'JavaScript in 24 Hours',

'author'=>'Moncur');

$books[1] = array('title'=>'JavaScript Unleashed',

'author'=>'Wyke');

$books[2] = array('title'=>'Network+ Second Edition',

'author'=>'Harwood');

?>

Accessing Elements in a Multidimensional PHP Array

• We need to first specify the array row that we wish to access.

• we need to specify the column in that row

• To access an element, therefore we specify the array name

• and then follow it with the desired row and column of the array

• each enclosed in square brackets ([]).

<?php

$books = array();

$books[0] = array('title'=>'JavaScript in 24 Hours',

'author'=>'Moncur');

$books[1] = array('title'=>'JavaScript Unleashed',

'author'=>'Wyke');

$books[2] = array('title'=>'Network+ Second Edition',

'author'=>'Harwood');

echo $books[1]['author'];

?>

Using PHP Array Pointers

• PHP arrays maintain an internal pointer that records the current element.

• This pointer can be changed using the next, previous, reset and end functions.

• The reset and end functions move the pointer to the first and last elements of the
array respectively

• The next function moves the pointer on to the next array element.

• The prev moves the pointer to the previous array element.

• The next and prev functions return false when it is not possible to move any
further in the corresponding direction.

• Each function takes the name of the array in which the pointer adjustment is to take
place as an argument

Using PHP Array Pointers

<?php

 $colorArray = array("Red", "Yellow", "Green", "Blue", "Indigo");

 echo 'The last element is ' . end($colorArray) . '
';

 echo 'The previous element is ' . prev($colorArray) . '
';

 echo 'The first element is ' . reset($colorArray) . '
';

 echo 'The next element is ' . next($colorArray) . '
';

?>

Changing, Adding and Removing PHP Array Elements

• n array element can be changed by assigning a new value to it

• using the appropriate index key

• A new item can be added to the end of an array using the array_push() function

• This function takes two arguments

• the first being the name of the array

• the second the value to be added

$colorArray = array("Red", "Yellow", "Green", "Blue", "Indigo");

$colorArray[0] = "Orange";

$colorArray = array("Red", "Yellow", "Green", "Blue", "Indigo");

array_push($colorArray, "White");

Changing, Adding and Removing PHP Array Elements

• A new element can be inserted at the start of the array

• using the array_shift() function which takes the array name and the value to be
added as arguments

• The last item added to an array can be removed from the array

• using the array_pop() function.

$colorArray = array("Red", "Yellow", "Green", "Blue", "Indigo");

array_shift($colorArray, "White"); // Add White to start of array

$colorArray = array("Red", "Yellow", "Green", "Blue", "Indigo");

array_push($colorArray, "White"); // Add White to end of array

array_pop($colorArray); // Remove White from the end of the array

Changing, Adding and Removing PHP Array Elements

• The first item in the array can be removed using the array_unshift() function:

$colorArray = array("Red", "Yellow", "Green", "Blue", "Indigo");

array_shift($colorArray, "White"); // Add White to start of array

array_unshift($colorArray) // Remove White from the start of the array

Looping through PHP Array Elements

• It is often necessary to loop through each element of an array to either read or
change the values contained therein.

• One such mechanism is to use the foreach loop.

• The foreach loop works much like a for or while loop

• allows you to iterate through each array element.

• There are two ways to use foreach.

Looping through PHP Array Elements

• The first assigns the value of the current element to a specified variable

• which can then be accessed in the body of the loop.

• The syntax for this is: foreach ($arrayName as $variable)

 $colorArray = array("Red", "Yellow", "Green", "Blue", "Indigo");

 foreach ($colorArray as $color)

 {

 echo "$color
";

 }

Looping through PHP Array Elements

• For associative arrays the foreach keyword allows you to iterate through both the keys
and the values

• Using the followint: foreach ($arrayName as $keyVariable=>$valueVariable)

$customerArray = array('customerName'=>'John Smith',

'customerAddress'=>'1 The Street', 'accountNumber'=>'123456789');

foreach ($customerArray as $key=>$value) {

echo "Key = $key
";

 echo "Value = $value
";

}

Replacing Sections of an Array

• Entire blocks of array element can be modified using the array_splice() function.

• The array_splice() function takes two mandatory and two optional arguments.

• The first argument is the name of the array on which the function is to work.

• The second argument specifies the index into the array where the splice is to take
effect.

• The optional third argument specifies the end point of the splice

• The final argument is an optional array containing elements to be used to replace
the removed items.

$myArray = array ('One', 'Two', 'Three', 'Four', 'Five');

$myReplacements = array ('Six', 'Seven', 'Eight');

$extract = array_splice ($myArray, 2, 4, $myReplacements);

Sorting a PHP Array

• An array can be sorted using the sort function.

• A number of different sorts are possible using the sort function.

• The first argument is the name of the array.

• The second indicates the sort algorithm to use.

• The available algorithms are SORT_NUMERIC, SORT_STRING and
SORT_REGULAR.

• If no sort type is specified, SORT_REGULAR is used.

• Similarly array items can be sorted in descending order using the rsort function.

$colorArray = array("Red", "Yellow", "Green", "Blue", "Indigo");

sort($colorArray, SORT_STRING);

Sorting Associative Arrays

• Associative arrays can be sorted in two ways

• by key

• ksort

• krsort reverse function

• by value

• asort

• arsort reverse function

• The syntax and options for these functions are as outlined for the sort and rsort
functions above.

Opening and Creating Files in PHP

• Existing files are opened, and new files created using the PHP fopen() function.

• The fopen() function accepts two arguments and returns a file handle

• which is subsequently used for all future read and write interactions with that file.

• The first argument is the name

• This path is relative to the server filesystem root, not your web server root.

• The second argument is an attribute indicating the mode in which to open the file

<?php

$fileHandle = fopen('/tmp/php_essentials.txt', 'w+')

?>

Closing Files in PHP

• Once a file has been opened it can be closed using the fclose() function.

• The fclose() function takes a single argument

• the file handle returned by the fopen function when the file was first opened.

<?php

$fileHandle = fopen('/tmp/php_essentials.txt', 'w+')

 OR die ("Can't open file\n");

fclose ($fileHandle);

?>

Writing to a File using PHP

• We can do this using the PHP fwrite() and fputs() functions.

• These are essentially the same function so either can be used.

• fwrite() takes two arguments

• the file handle returned from the original fopen()

• and the string to be written

<?

$fileHandle = fopen('/tmp/php_essentials.txt', 'w+') OR die ("Can't open”);

$result = fwrite ($fileHandle, "This line of text was written by PHP\n");

if ($result) {

 echo "Data written successfully.
";

} else {

 echo "Data write failed.
";

}

fclose($fileHandle);

?>

Reading From a File using PHP

• Data can be read from a file using the PHP fread() function.

• fread() accepts two arguments

• the file handle

• the number of bytes to be read from the file

<?

$fileHandle = fopen('/tmp/php_essentials.txt', 'w+') OR die ("Can't open”);

fwrite ($fileHandle, "This line of text was written by PHP\n");

fclose($fileHandle);

$fileHandle = fopen('/tmp/php_essentials.txt', 'r') OR die ("Can't open”);

$fileData = fread ($fileHandle, 1024);

echo "data = $fileData";

fclose($fileHandle);

?>

Checking Whether a File Exists

• The file_exists function can be used at any time to find if a file already exists in
the filesystem.

• The function takes a single argument

• the path to the file in question

• Returns a boolean true or false

• depending on the existence of the file.

Moving, Copying and Deleting Files with PHP

• Files can be copied using the copy() function

• Renamed using the rename() function

• Deleted using the unlink() function

<?

if (file_exists('/tmp/php_essentials.txt) {

copy ('/tmp/php_essentials.txt, '/tmp/php_essentials.bak');

rename ('/tmp/php_essentials.bak', '/tmp/php_essentials.old');

unlink ('/tmp/php_essentials.old'); // Delete the file

}

?>

Accessing File Attributes

• The PHP stat() and fstat() functions provide a wealth of information about a file.

• The information is so copious that the results are returned as an associative array.

• The functions take a single argument.

• stat() takes a string defining the path to the file

• fstat() takes a file handle returned from an fopen() function call.

Accessing File Attributes

• With reference to the above table we can now extract some information about a file
on the file system of our server:

<?php

$results = stat ("/tmp/php_essentials.txt");

echo "File size is $results[size]
";

echo "File last modifed on $results[mtime]
";

echo "File occupies $results[blocks] filesystem blocks
";

?>

Creating Directories in PHP

• A new directory can be created in PHP using the mkdir() function.

• The second, optional argument allows the specification of permissions on the
directory

<?php

$result = mkdir ("/path/to/directory", "0777");

?>

Deleting a Directory

• Directories are deleted in PHP using the rmdir() function.

• rmdir() takes a single argument, the name of the directory to be deleted.

• The deletion will only be successful if the directory is empty.

• If the directory contains files or other sub-directories the deletion cannot be
performed

• until those files and sub-directories are also deleted.

Finding and Changing the Current Working Directory

• The current working directory can be identified using the getCwd() function:

• The current working directory can be changed using the chdir() function.

<?php

$current_dir = getCwd();

echo "Current directory is $current_dir";

?>

<?php

$current_dir = getCwd();

echo "Current directory is $current_dir
";

chdir ("/tmp");

$current_dir = getCwd();

echo "Current directory is now $current_dir
";

?>

Listing Files in a Directory

• The files in a directory can be read using the PHP scandir() function.

• The first argument is the path the directory to be scanned.

• The second optional argument specifies how the directory listing is to be sorted.

• If the argument is 1 the listing is sorted reverse-alphabetically.

• If the argument is omitted or set to 0 the list is sorted alphabetically.

<?php

chdir ("/tmp");

$current_dir = getCwd();

echo "Current directory is now $current_dir";

$array = scandir(".", 1);

print_r($array);

?>

What is a PHP Session?

• PHP Sessions allow web pages to be treated as a group

• allowing variables to be shared between different pages.

• One of the weaknesses of cookies is that the cookie is stored on the user's
computer

• This provides the user the ability to access, view and modify that cookie for
potentially nefarious purposes.

• PHP sessions, on the other hand, store only an ID cookie on the user's system which is
used to reference the session file on the server.

• the user has no access to the content of the session file

• thereby providing a secure alternative to cookies.

• PHP sessions also work when the user has disabled the browser's cookie support.

Creating a PHP Session

• PHP sessions are created using the session_start()

• should the first function call of the PHP script on your web page

• The following example demonstrates the creation of a PHP session:

<?php

 session_start();

?>

<html>

<head>

<title>A PHP Session Example</title>

</head>

<body>

</body>

</html>

Creating and Reading PHP Session Variables

• Variables can be assigned to a session using the $_SESSION array

• This is a global array that is accessible to all the pages on your web site.

• This is also an associative array

• it is possible to access array elements using the variable name as an index.

• Session variables can be any type of data

• strings, numbers, arrays and objects.

• Session variables can be defined using a number of mechanisms.

• Variables can be assigned directly to the $_SESSION array

• using the assignment operator and variable name:

<?php

 $_SESSION['userName'] = 'Negroponte';

?>

Creating and Reading PHP Session Variables

• Another option is to use the PHP session_register() function.

• session_register() takes two arguments

• the string representing the variable name

• the value to be assigned to the variable

<?php

session_register('username', 'Negroponte');

?>

Creating and Reading PHP Session Variables

• Session variables are accessed by using the variable name as an index key into the
$_SESSION array.

• The session_is_registered() function can also be used to make sure the variable exists
before attempting to read the value

<? session_start(); ?>

<html><head><title>Simple HTML Form</title></head>

<body>

<?php

if (session_is_registered('userName') {

$_SESSION['userName'] = 'Neil';

echo 'userName = ' . $_SESSION['userName'];

}

?>

</body></html>

Writing PHP Session Data to a File

• Session data only stays active on the web server until it expires or the session is
deleted.

• Once deleted, all the data associated with the session is lost.

• A snapshot of the session data can, however, be taken at any time and written out to a
file.

• Once saved, it can be reloaded when required.

Writing PHP Session Data to a File

• To save a session state the session_encode() function is used combined the PHP file
I/O functions

• The session_encode() function returns an encoded string containing the session data.

• Once this string has been obtained it can be written to a file:

<?

$_SESSION['userName'] = 'Negroponte';

$_SESSION['emailAddress'] = 'negroponte@gmail.com';

$session_data = session_encode();

// open a file write session data

$filehandle = fopen ('/tmp/php_session.txt', 'w+');

// write the session data to file

fwrite ($filehandle, $session_data);

fclose ($filehandle);

?>

Reading a Saved PHP Session

• Once session data has been written to a file it can be read back in

• decoded and applied to the current session

• This is achieved using the session_decode() function:

<?php session_start(); ?>

<html><head></head><body>

<?php

 $filehandle = fopen ('/tmp/php_session.txt', 'r');

 $sessiondata = fread ($filehandle, 4096);

 fclose ($filehandle);

 session_decode($sessiondata); // Decode the session data

 print_r($sessiondata); // Display the session data

?>

</body></head>

