PHP +
OOP

Costantino Pistagna
pistagna@dmi.unict.it




How is an Object Created from a Class?

The process of creating an object from the class 'blueprint’ is called instantiation.

Essentially, you instantiate an instance of the class and give that instance a name by
which you will refer to it when accessing members and calling methods.

You can create as many object instances of a class as you desire.

Obijects are instantiated using the new keyword.

SaccountObject = new bankAccount();




What is sub-classing?

® |t is possible to build classes that are derived from other classes

® extending the functionality of the parent class to make it specific to a particular
requirement

® For example you might have a vehicle class which contains the attributes common to
all vehicles

® and a subclass called car which inherits all the generic vehicle attributes

® but adds some its own car specific methods and properties.




Defining a PHP Class

Before an object can be instantiated we first need to define the class 'blueprint’ for the
object.

Classes are defined using the class keyword followed by braces which will be used to
enclose the body of the class

<?php
class bankAccount {

}

2>

We have now defined a class.

The next step is add some functionality to the class.




PHP Class Constructors and Destructors

The next step in creating a class is to define what should happen when an object is
first instantiated using the class

® and also when that object is later destroyed.
These actions are defined in the constructor and destructor methods of the class.

The constructor and destructor are really just functions that get called when the
object is created and destroyed

® are defined in the class body using the function keyword.
® This needs to be prefixed with the public qualifier.
® This means the method is accessible to code outside of the object.

The default names for the constructor and destructor are __ construct and __ destruct
respectively.




PHP Class Constructors and Destructors

® We can now extend our bankAccount class to include a constructor and destructor:

<?php
class bankAccount {

public function _ construct($SaccountNumber, S$accountName) ({
echo “Object was just instantiated.”;
echo “Number = SaccountNumber, Name = SaccountName <br>";

}

public function _ destruct() {
echo “Object was just destroyed <br>";

}




Creating Members in a PHP Class

Class members are essentially variables and methods embedded into the class.

Members can be public or private and static or variable.

public members can be accessed from outside the object.

private members can only be accessed by methods contained in the class.

This is the key to what is called data encapsulation.

Obiject-oriented programming convention dictates that data should be encapsulated in
the class and accessed and set only through the methods of the class

typically called getters and setters




Creating Members in a PHP Class

Members declared as static are immutable
® once defined they cannot be changed (much like constants)

Members and functions are prefixed with public, private and static when declared in
the class.

® The default is public non-static.




Creating Members in a PHP Class
® We can now extend out bankAccount class to add member variables to hold the
account name and number passed into the constructor.

® True to the concept of data encapsulation we will be creating methods to access these
values later

® so will mark them as private.

® We will also add to our constructor to assign the passed arguments to our new
members.

® When doing so we need to use the $this variable to tell PHP we are setting
variables in the current class




Creating Members in a PHP Class

<?php
class bankAccount {

2>

private S$accountNumber;
private $accountname;

public function __ construct($acctNumber, S$acctName) {

}

public function _ destruct() {

}

Sthis->accountNumber = S$acctNumber;
Sthis->accountname = SacctName;

echo 'Object was just destroyed <br>';

SmyObj = new bankAccount('123456', 'Giuseppe Rossi');




Defining and Calling Methods

We define our own methods in much the same way as we declared the constructor
and destructor

® with exception that we get to choose the names

public function setAccountNumber ($acctNumber)

{
Sthis->accountNumber = SacctNumber;
}
public function setAccountName ($SacctName)
{
Sthis->accountName = SacctName;
}
public function getAccountName ()
{
return S$this->accountName;
}

public function getAccountNumber /()

{

return S$this->accountNumber;

}




Defining and Calling Methods

Now that we have defined our getter and setter methods to get and set the account
values we can call the methods.

This is done by specifying the name of the object on which the methods are being

called.

This is followed by '=>', and then the name of the method we are calling

$myObj = new bankAccount('123456', 'Giuseppe Verdi');
$SmyObj->setAccountNumber('654321"');

SaccountNumber = $myObj->getAccountNumber();

echo "New Account Number is $accountNumber";




Subclassing in PHP

Once a class has been defined it is possible to create a new class derived from it
e that extends the functionality of the original class

The parent class is called the superclass

e the child the subclass

The whole process is referred to as subclassing.

A subclass of a class can be defined using the extends keyword when declaring the
subclass

<?php
class savingsAccount extends bankAccount {

private $interestRate = 5;




Subclassing in PHP

<?php
class savingsAccount extends bankAccount {

private $interestRate = 5;

The important point to note here is that savingsAccount inherits all the members and
methods of bankAccount

® and adds a new member (the interest rate)




Subclassing in PHP

® We can extend the class further by adding a new method to return the interest rate:

class savingsAccount extends bankAccount {
private S$SinterestRate = 5;

public function getInterestRate()
{

return $this->interestRate;

}




PHP Object Serialization

Serialization is the ability to take a snapshot of the current state of an object and
then save that object to a file

® or even transmit it over a network to another process where it will be re-activated
All objects have built-in method called __sleep that is called before serialization.

® |f you need your object to perform any housekeeping before being serialized you
will need to override this method.

An object is serialized using the serialize() function

® and unserialized, using the unserialize() function.




PHP Object Serialization

As an example we can serialize our bankAccount object:

SmyObj =
Sserialized =
echo 'Object is serialized<br>';

SnewObj =

echo

print r ($newObj);

new bankAccount('246810',

serialize (SmyObj);

unserialize ($serialized);

'Object is unserialized<br>';

'Mario Rossi');

Once we have the serialized data in our $serialized object

we can do anything we want with it

write it to a file or send it through a network socket to another process




