
PHP +
OOP
Costantino Pistagna

pistagna@dmi.unict.it

How is an Object Created from a Class?

• The process of creating an object from the class 'blueprint' is called instantiation.

• Essentially, you instantiate an instance of the class and give that instance a name by
which you will refer to it when accessing members and calling methods.

• You can create as many object instances of a class as you desire.

• Objects are instantiated using the new keyword.

$accountObject = new bankAccount();

What is sub-classing?

• It is possible to build classes that are derived from other classes

• extending the functionality of the parent class to make it specific to a particular
requirement

• For example you might have a vehicle class which contains the attributes common to
all vehicles

• and a subclass called car which inherits all the generic vehicle attributes

• but adds some its own car specific methods and properties.

Defining a PHP Class

• Before an object can be instantiated we first need to define the class 'blueprint' for the
object.

• Classes are defined using the class keyword followed by braces which will be used to
enclose the body of the class

• We have now defined a class.

• The next step is add some functionality to the class.

<?php

class bankAccount {

}

?>

PHP Class Constructors and Destructors

• The next step in creating a class is to define what should happen when an object is
first instantiated using the class

• and also when that object is later destroyed.

• These actions are defined in the constructor and destructor methods of the class.

• The constructor and destructor are really just functions that get called when the
object is created and destroyed

• are defined in the class body using the function keyword.

• This needs to be prefixed with the public qualifier.

• This means the method is accessible to code outside of the object.

• The default names for the constructor and destructor are __construct and __destruct
respectively.

• We can now extend our bankAccount class to include a constructor and destructor:

PHP Class Constructors and Destructors

<?php

class bankAccount {

 public function __construct($accountNumber, $accountName) {

 echo “Object was just instantiated.”;

echo “Number = $accountNumber, Name = $accountName
”;

 }

 public function __destruct() {

 echo “Object was just destroyed
”;

 }

}

?>

Creating Members in a PHP Class

• Class members are essentially variables and methods embedded into the class.

• Members can be public or private and static or variable.

• public members can be accessed from outside the object.

• private members can only be accessed by methods contained in the class.

• This is the key to what is called data encapsulation.

• Object-oriented programming convention dictates that data should be encapsulated in
the class and accessed and set only through the methods of the class

• typically called getters and setters

Creating Members in a PHP Class

• Members declared as static are immutable

• once defined they cannot be changed (much like constants)

• Members and functions are prefixed with public, private and static when declared in
the class.

• The default is public non-static.

Creating Members in a PHP Class

• We can now extend out bankAccount class to add member variables to hold the
account name and number passed into the constructor.

• True to the concept of data encapsulation we will be creating methods to access these
values later

• so will mark them as private.

• We will also add to our constructor to assign the passed arguments to our new
members.

• When doing so we need to use the $this variable to tell PHP we are setting
variables in the current class

Creating Members in a PHP Class

<?php

class bankAccount {

 private $accountNumber;

 private $accountname;

 public function __construct($acctNumber, $acctName) {

 $this->accountNumber = $acctNumber;

 $this->accountname = $acctName;

 }

 public function __destruct() {

 echo 'Object was just destroyed
';

 }

}

 $myObj = new bankAccount('123456', 'Giuseppe Rossi');

?>

Defining and Calling Methods

• We define our own methods in much the same way as we declared the constructor
and destructor

• with exception that we get to choose the names

...

public function setAccountNumber($acctNumber)

 {

 $this->accountNumber = $acctNumber;

 }

 public function setAccountName($acctName)

 {

 $this->accountName = $acctName;

 }

 public function getAccountName()

 {

 return $this->accountName;

 }

 public function getAccountNumber()

 {

 return $this->accountNumber;

 }

...

Defining and Calling Methods

• Now that we have defined our getter and setter methods to get and set the account
values we can call the methods.

• This is done by specifying the name of the object on which the methods are being
called.

• This is followed by '->', and then the name of the method we are calling

...

$myObj = new bankAccount('123456', 'Giuseppe Verdi');

$myObj->setAccountNumber('654321');

$accountNumber = $myObj->getAccountNumber();

echo "New Account Number is $accountNumber";

...

Subclassing in PHP

• Once a class has been defined it is possible to create a new class derived from it

• that extends the functionality of the original class

• The parent class is called the superclass

• the child the subclass

• The whole process is referred to as subclassing.

• A subclass of a class can be defined using the extends keyword when declaring the
subclass

<?php

class savingsAccount extends bankAccount {

 private $interestRate = 5;

}

Subclassing in PHP

• The important point to note here is that savingsAccount inherits all the members and
methods of bankAccount

• and adds a new member (the interest rate)

<?php

class savingsAccount extends bankAccount {

 private $interestRate = 5;

}

Subclassing in PHP

• We can extend the class further by adding a new method to return the interest rate:

class savingsAccount extends bankAccount {

 private $interestRate = 5;

 public function getInterestRate()

 {

 return $this->interestRate;

 }

}

PHP Object Serialization

• Serialization is the ability to take a snapshot of the current state of an object and
then save that object to a file

• or even transmit it over a network to another process where it will be re-activated

• All objects have built-in method called __sleep that is called before serialization.

• If you need your object to perform any housekeeping before being serialized you
will need to override this method.

• An object is serialized using the serialize() function

• and unserialized, using the unserialize() function.

PHP Object Serialization

• As an example we can serialize our bankAccount object:

• Once we have the serialized data in our $serialized object

• we can do anything we want with it

• write it to a file or send it through a network socket to another process

$myObj = new bankAccount('246810', 'Mario Rossi');

$serialized = serialize ($myObj);

echo 'Object is serialized
';

$newObj = unserialize ($serialized);

echo 'Object is unserialized
';

print_r ($newObj);

